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The influence of polydispersity on the phase equilibrium properties of a dipolar system with additional
short-range(repulsive1attractive) interactions(modeled by a shifted Lennard-Jones pair potential) is studied
by means of Gibbs ensemble Monte Carlo simulations. The critical temperature and density as well as the
magnetization at the critical point are calculated as a function of the applied magnetic field, and the obtained
results are compared with the data determined in a monodisperse equivalent of the system.
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Ferrofluids or magnetic fluids are stable colloidal disper-
sions of small magnetic particles(with a diameter of
4–14 nm) in liquid carriers[1]. The particles have perma-
nent magnetic dipole moments, which are proportional to
their volumes. For such systems, fluid-fluid phase transitions
have not only been predicted but also experimentally ob-
served[2]. Ferrofluids are generally treated as dipolar fluids,
where only the colloidal particles are explicitly taken into
account [3]. Investigations of the influence of anisotropic
interactions, as in dipolar fluids, yielded numerous theoreti-
cal reports on the phase behavior of dipolar systems[4,5].
Although, at fairly low temperatures, vapor-liquid phase
equilibrium might exist for pure dipolar interactions[6], this
coexistence commonly requires the(for real ferrofluids ever
present) van der Waals attraction[3].

In real ferrofluids the nanoparticles can have different
sizes and different magnetic moments. The polydispersity in
the particle size or in the magnetic moment affects the equa-
tion of state for the system. Size polydispersity, for example,
has been shown to have a large effect on the coexistence
densities of fluids[7]. Recently, some reports on the influ-
ence of polydispersity on the phase behavior of dipolar sys-
tems appeared in the literature[8,9], although these studies
have been carried out exclusively for bidisperse systems.

In our previous paper[10] we studied the influence of
polydispersity on the equilibrium magnetic properties of di-
polar liquids. In this Brief Report, our main concern is the
influence of polydispersity on the vapor-liquid coexistence
properties of a dipolar system with realistic polydispersity.
Phase equilibrium density curves are calculated and the criti-
cal points are estimated as a function of the applied external
field and the obtained results are compared with the data
determined in a monodisperse equivalent of the system.

The system consists of spherical particles of diametersi,
which have permanent point dipole(magnetic) momentsmi.
The short range repulsive interaction and the van der Waals
attraction between particlesi and j are modeled by a shifted
Lennard-Jones pair potential:

wi j
r = 4«FS si j

r i j − z
D12
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r i j − z
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where« is the energy parameter,r ij is the interparticle dis-
tance,si j =ssi +s jd /2, andz is an additional size parameter.
Shifting in the distance scale allows a crude approximation
to take into account the fact that, due to the presence of
stabilizing nonmagnetic layers, the particle size in ferrofluids
exceeds the magnetic core diametersi.

The dipole-dipole potential between particlesi and j is
given by
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wherem0 is the permeability of vacuum, and the interaction
of dipole moments with an external fieldH can be written as

wi
ext = − mi ·H . s3d

.
The particle polydispersity is described by the gamma dis-

tribution [11]

fsxd =
z

x0
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x0
Daexps− x/x0d

Gsa + 1d
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wherex is the magnetic core diameter of particles,x0 anda
are the parameters of the distribution,G denotes the gamma
function, andz is taken as the unit length[to render fsxd
dimensionless]. For spherical particless=x, and the mag-
netic moment reads

m= m0Md
p

6
x3, s5d

whereMd represents the bulk magnetization of the ferromag-
netic component.
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Constant volume and temperature Gibbs ensemble Monte
Carlo (GEMC) calculations have been performed usingN
=1000 particles. The production period in the simulations
varied between 300 000 and 400 000 cycles. In the case of
the larger particles in the polydisperse system the identity
exchange algorithm was utilized[12] because the probability
of a successful normal particle transfer was prohibitively
low.

Standard long-range corrections were applied for the
Lennard-Jones-type interaction. The long-range dipolar inter-
actions were treated using the Ewald summation with con-
ducting boundary condition[13]. The results for the dipolar
(magnetic) fluids are presented in reduced units, where the
mean magnetic core diameter is used fors: T* =kT/« is the
reduced temperature withk being the Boltzmann constant,
r* =Ns3/V is the reduced density,p* =ps3/« is the reduced
pressure, andM* =M /Î4p« / sm0s3d is the dimensionless
magnetization.

Furthermore, the dimensionless form of the external mag-
netic field isH* =HÎ4pm0s3/«, andm*2 =m2/ s4pm0«s3d is
the reduced squared magnetic moment. For the magnetic
coupling, l=m*2 /T* =1 was adopted atT* =1. This choice
implies that the average reduced magnetic moment was unity
in all calculations. It should be noted, however, that the mean
magnetic momentm̄ in the polydisperse system is not pro-
portional to x̄3=s3 [where x̄=x0sa+1d], but to the mean

cubed core diameter,x3̄=x0
3sa+1dsa+2dsa+3d. For the pa-

rameters of the gamma distribution,x0/z=1 anda=6 were
taken, thus the resultant shape of the distribution is typical of
real ferrofluids if theunit length is set to1 nm [2,10]. The
discretization of the particle distribution density necessary
for molecular simulation with a limited number of particles
is illustrated in Fig. 1. The exact mean core diameter is re-
produced within 1%, while for the mean magnetic moment
the discrete and the continuous distributions provide the
same value. In the simulations the equilibrium magnetization
can be obtained from the expression

M =
1

m0
Ko

i=1

N
mi

V L , s6d

where the brackets denote ensemble average. The calculated
magnetization values are compared with the saturation mag-
netization of the ideal ferrocolloid gas,

Ms =
m̄

m0
KN

V
L . s7d

Clusters are defined on the basis of the pair energies of the
interacting particles[14]. Two particles are considered to be
bound if their potential energy is less than 75% of their con-
tact energy in perfect coalignment.

The phase coexistence was studied at fixed number den-
sities and polydispersity of the(starting) parent phase. This
corresponds to the experimental procedure that involves add-
ing a prescribed quantity of particles with a given degree of
polydispersity to a vessel of fixed volume and observing pos-
sible phase separations. Although phase separation results in
coexisting phases with different particle distribution density,
the procedure allows the conservation of the applied distri-
bution for the whole system. If we finally restrict ourselves
to two-phase coexistence and monomodal distribution, we
can avoid the problem associated with the infinite dimen-
sionality of the full phase diagram of polydisperse systems,
and our system can be treated as a quasi one-component
system.

The vapor-liquid coexistence results of our polydisperse
system are compared with those of a monodisperse system.
The monodiperse fluid is characterized by uniforms andm,
with the additional specification thatm* =1. However, it
should be mentioned that we have to make a compromise at

this point. Asm̄~x3̄ and x3̄Þ x̄3 for the polydisperse fluid,
the monodisperse fluid can be considered either to have a
different mean core diameter or differentMd (i.e., different
ferromagnetic component) than those of the polydisperse
fluid. According to the applied model,m* decreases by about
one-third if we take the samex̄ as well asMd for the two
systems. As the choice ofs is somewhat arbitrary, the
equivalent monodisperse system might be the one with the
same volume fraction of the magnetic cores as the polydis-
perse system(at the same number density). This means that,
instead of the mean core diameter, the mean cubed core di-
ameter would be identical for the two systems. Disregarding
the volume fraction, this choice does not concern our nu-
merical results presented in reduced units.

We started the calculations atT* =1, where the density of
the parent phase of the polydisperse systemr0 was chosen so
that the vapor pressure of the monodisperse fluid at this tem-
perature is reproduced. Raising the temperature, the coexist-
ence density curves behave ordinarily up to a point for which
the density of either phase becomes equal to the density of
the parent phase. At this end point of phase equilibrium one
phase coexists with an infinitesimal amount of the other
phase. The coexistence density curves meet at the critical
temperatureTc only if the density of the parent phase is equal
to the critical densityrc. Accordingly, the critical point of
our polydisperse system can be determined solely by an it-
erative procedure. First, a pseudocritical density is estimated
for a selectedr0

s0d using the GEMC results at various tem-
peratures up to the end point. Assuming a Wegner expansion
[15] and neglecting the contribution from the gap exponent
[16], the vaporsVd and the liquidsLd densities can be fitted
to the expression

FIG. 1. Discretization of the particle distribution.
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rL,V = rc ± Bs1 − T/Tcdb + Cs1 − T/Tcd, s8d

whereB andC are parameters andb is the critical exponent
which is set to its exact nonclassical value, 0.325. The coex-
istence curves are then determined by GEMC forr0

s1d=rc
s0d,

and the procedure is repeated untilrc
snd agrees withr0

snd

within the uncertainty of the calculation. This procedure ne-
cessitates 3–5 iterations in the present case.

Essentially for an entropic reason, polydispersity affects
the coexisting phases in such a way that the difference be-
tween the more and less ordered phases is reduced. Table I
shows that, at the same temperature and pressure, the satu-
rated liquid density of the polydisperse fluid notably deviates
from that of the monodisperse fluid. However, the marked
contrast between the two liquid phases almost disappears
when considering the proportion of volume occupied by the
magnetic cores to the system volume(volume fraction).
Note, from the definition of volume fraction,fmonodisperse

=r*sp /6d and fpolydisperse=r*spx3̄/6x̄3d, wherex3̄. x̄3, and
these mean values are different in the coexisting polydisperse
vapor and liquid phases. At this state pointfpolydisperseturns
out to be slightly greater thanfmonodispersefor the vapor
phases. The distributions of particles obtained here in the
coexisting polydisperse phases are typical of the other state
points examined: the larger particles predominantly belong
to the denser phase. The dissimilarity manifests itself also in
the formation of clusters. Approximately 3% of the particles
are organized in randomly distributed short and flexible clus-
ters in the denser polydisperse phase at zero external field,
while in the monodisperse phases no cluster formation can
be found(according to our cluster definition). It is interesting
to note that this qualitative picture was found to be valid at
other temperatures and in the presence of the external mag-
netic field, although, obviously, some increase of the amount
of clusters with the field strength can be observed. Even at
strong fields, less than 5% of the particles of the polydisperse
liquid phases are organized in clusters and less than 0.1% of
the particles of the monodisperse phases are present in
dimers or trimers.

Figure 2 shows the vapor-liquid phase equilibrium curves
for our polydisperse system and for its monodisperse equiva-
lent (i.e., in both cases,m̄* =1). The most striking feature of
the figure is the relatively narrow coexistence envelopes ob-
tained for the polydisperse system. AsH* increases, the bet-
ter alignment of the dipoles along the field direction gives
stronger dipolar interactions, especially in the denser coex-
isting phase. Thus the coexistence envelopes broaden with

the field strength, which is consistent with the results re-
ported by Stevens and Grest[5] and Bodaet al. [17] for the
monodisperse Stockmayer fluid withm* =1. In contrast with
these works, we have explored in our calculations the ex-
tremely strong field regime,H* ù5. The coexistence enve-
lope of our shifted Stockmayer model is much narrower than
that of the original Stockmayer model[17]. The introduction
of the additional size parameterz yields smaller liquid and
greater vapor densities, as well as a lower critical tempera-
ture. Our preliminary calculations with the unshifted polydis-
perse model showed that this qualitative statement remains
valid also for the polydisperse model, but the changes are
smaller.

The critical properties are compiled in Table II. In agree-
ment with earlier findings,[5,17], rc

* changes only slightly in
both systems here. For the polydisperse system,Tc

* is signifi-
cantly greater andrc

* is significantly smaller than the corre-
sponding monodisperse value. The differences slightly de-
crease with the field strength, which can be anticipated from

TABLE I. Coexistence densities and average percentage of par-
ticles in clusters atT* =1.0. Here the coexistence pressure of the
polydisperse system is identical to the vapor pressure obtained for
the monodisperse systemsp* =0.0306d.

Fluid rL
* rV

*
Dimer %

sLd
Dimer %

sVd
Trimer %

sLd

monodisperse 0.4392 0.0421

polydisperse 0.3021 0.0360 2.2 0.8 0.2

FIG. 2. Coexistence densities at different external magnetic
fields for the monodisperse fluid(circles) and for the polydisperse
fluid for which the density of the parent phase is identical to the
critical density(squares). The curves from bottom to top correspond
to vapor-liquid equilibrium results atH* =0, 1, 2.5, 5, 10, and 20,
respectively. Crosses denote coexistence points atH* =0 for the
polydisperse fluid for which the density of the parent phase is cho-
sen so that the vapor pressure of the monodisperse fluid is repro-
duced atT* =1.0. Triangles are plotted only for comparison: they
represent the results for a monodisperse fluid withm* =0.6806,
where the mean magnetic core diameter as well as the bulk magne-
tization of the ferromagnetic component are the same as those of
the polydisperse fluid.

TABLE II. Critical properties at different magnetic fields. The
numbers in parentheses represent the estimated uncertainties in the
last digit.

H* Monodisperse fluid Polydisperse fluid

Tc
* rc

* fc Tc
* rc

* fc

0 1.151(5) 0.229(4) 0.120 1.232(5) 0.179(3) 0.138

1 1.170(5) 0.227(4) 0.119 1.264(5) 0.179(3) 0.138

2.5 1.220(4) 0.221(4) 0.116 1.300(5) 0.175(3) 0.135

5 1.268(5) 0.221(4) 0.116 1.331(5) 0.173(3) 0.133

10 1.303(4) 0.215(3) 0.113 1.361(5) 0.171(3) 0.132

20 1.327(4) 0.217(3) 0.114 1.369(5) 0.172(3) 0.132
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the relative changes of the widths of the coexistence density
curves as a function of the field strength. Table II contains
also the calculated volume fractions of magnetic cores dem-
onstrating the greater ability of the polydisperse system to fill
the accessible space.

We have calculated the equilibrium magnetization along
the coexistence curves as well, but found it difficult to com-
pare the results obtained at different densities. Therefore the
magnetization at the critical point relative to the saturation
magnetization of the ideal ferrocolloid gassMc/Msd was es-
timated assuming that, near the critical point,M* exhibits
similar scaling behavior to that ofr* . As Fig. 3 shows, at
weak magnetic fields the polydisperse system reveals consid-
erably greaterMc/Ms values. We think the presence of weak
aggregates, which are continuously forming and breaking in
the polydisperse system, is partly responsible for the en-

hancement of the magnetization. The results suggest that the
particles with magnetic moments larger than the mean mag-
netic moment have greater importance, probably due to their
greater ability to form clusters[10]. However, this figure also
demonstrates that the difference in magnetic properties be-
tween the polydisperse and monodisperse systems becomes
progressively smaller with increasingH* . At strong fields the
magnetization no longer depends on the distribution of the
magnetic moments, but on their average, and so the relative
magnetization appears to tend to the same limiting value in
both systems.

In summary, vapor-liquid coexistence properties were de-
termined in a polydisperse dipolar fluid. The experimentally
available examples of such fluids are the magnetic fluids in
which vapor-liquid-like phase separations, i.e., coexistence
of a dense liquid phase with a diluted liquid phase, are also
possible. Taking into account the realistic situation, i.e., poly-
dispersity in size and interaction strength, a considerable re-
duction of the width and upward shift of the critical point
were introduced into the phase diagram. The application of
an external magnetic field enhances the dissimilarity of the
coexisting phases in both the monodisperse and polydisperse
systems, but the expected saturation effect at higher fields,
especially in the relative magnetization at the critical point,
becomes more pronounced in the polydisperse system.
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